

# Respuesta de Sitio en Suelos

#### Xavier Vera Grunauer, Ph.D., D.GE., A.M. ASCE Director Instituto de Ingeniería (IIFIUC) de la Universidad Católica de Santiago de Guayaquil.



#### Principales factores que influyen en los efectos locales del sitio (Romo et al., 2000)

| Sismológicos | <ul> <li>Intensidad y contenido de frecuencias de los movimientos<br/>sísmicos de roca basal</li> <li>Duración delos movimientos en roca basal</li> </ul>                                                               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geológicos   | <ul> <li>Estructuras geológicas locales</li> <li>Tipo de roca subyacente</li> <li>Características estratigráficas: espesor de los depósitos y tipos de suelos</li> </ul>                                                |
| Geotécnicos  | <ul> <li>Características de vibración elástica de los depósitos de suelo</li> <li>Compotamiento no lineal del suelo</li> <li>Impedancia relativa entre la roca basal y los depósitos de suelo sobreyacientes</li> </ul> |
| Geométricos  | <ul> <li>Depósitos de suelo estratificados no horizontales</li> <li>Topografía de la interfaz sueloroca basal</li> <li>Configuración de la cuenca</li> </ul>                                                            |



Tk station Vs<sub>30</sub>= 800 m/s Suelo tipo B (NEC-15)

ERU station Vs<sub>30</sub>= 101 m/s Suelo tipo F (NEC-15)

TT station Vs30= 178 m/s Suelo tipo F (NEC-15)







motion event (FF) from July 30, 2012, at IGN's stations; TT, ERU and TK



Figure 4.26 Acceleration, velocity and displacement response spectra for recorded crustal ground motion event (NF) from October 28, 2012, at IGN's stations; TT, ERU and TK

# Relación de impedancia y deconvolución



Within motion (rock) = f ( $\alpha z$ , Msuelo, Tsuelo)

$$\alpha_z = \frac{\rho_{j \, V_{sj}}}{\rho_{i \, V_{si}}}$$





Cuando usar análisis Lineales Equivalentes Vs Nolineales

#### Kaklamanos et al (2013)



## Métodos de análisis de respuesta de sitio 1Dvertical

#### Modelo de masas distribuidas, NL

#### $m_1/2$ Layer Properties k1,c1 h<sub>1</sub> G : shear modulus $\rho$ : density V<sub>s</sub>: shear wave velocity $k_2, c_2$ h : thickness Equivalent Lumped Mass Model k: stiffness c: viscous damping $m_n/2$ $C_E = \rho_n V_{SE}$ k<sub>n</sub>,c<sub>n</sub> **Elastic Rock Base**

Multi-degree of freedom lumped parameter model

$$[M]{\ddot{u}} + [K]{u} + [C]{\dot{u}} = -[M]{I}{\ddot{u}}_{g}$$

$$[C] = \alpha_R[M] + \beta_R[K]$$

#### Modelo de propagación de ondas, LE



Mov. Armonico Est. Estable

$$\rho \frac{\partial^2 u}{\partial t^2} = G \frac{\partial^2 u}{\partial z^2} + \eta \frac{\partial^3 u}{\partial z^2 \partial t}$$

$$f_{max,i} = \frac{V_{s,i}}{4H_i}$$
;  $T_{min} = \frac{1}{f_{max}}$ 



2004  $M_w$  6.0 Parkfield Earthquake (PGA = 0.07g)

(Hutabarat, 2016)

Igual sismo pero escalado para PGA = 1.0g

#### Respuesta de un Perfil de Suelo a Ondas Sísmicas: Modelo Matemático

- Tres factores modifican ondas sísmicas propagándose de roca basal a la superficie:
  - Resonancia
  - Conservación de energía
    - Al pasar de un material más rígido a uno menos rígido la amplitud de onda aumenta
  - Amortiguamiento del suelo atenúa las ondas sísmicas
    - Amortiguamiento en suelos es mucho mayor al amortiguamiento en rocas





#### Respuesta de un Perfil de Suelo a Ondas Sísmicas: Resonancia

• ¿Por qué hay amplificación?



#### <u> Anàlisis LINEAL EQUIVALENTE – SHAKE 2000</u>







#### Respuesta de un Perfil de Suelo a Ondas Sísmicas: Metodología







#### Respuesta de un Perfil de Suelo a Ondas Sísmicas

 $\omega_0 H$ 

 $V_s$ 

 $\pi$ 

2

• Ejemplo 1:

Suelo elástico sobre roca rígida (no amortiguamiento)

$$\left|F(\omega)\right| = \frac{1}{\cos\omega\frac{H}{V_s}}$$





# Modelos numéricos de respuesta Nolineal

| Codes     | ID       | Computational Method                                                                                        | Viscous<br>Damping<br>Matric, [C]           | Nonlinear Soil Model                                  |                                                                           | Reference for Soil                                                     | Reference for                 |
|-----------|----------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|
|           |          |                                                                                                             |                                             | Backbone Curve                                        | Hysteretic Damping                                                        | Model                                                                  | Computer Code                 |
| D-MOD2000 | DMOD2000 | 1D time integration (Newmark β)<br>solving dynamic equation (Lumped<br>Mass system)                         | Full Rayleigh<br>Damping <sup>1</sup>       | Modified Kondner &<br>Zelasko (MKZ)                   | Extended Masing<br>Rules (Vucetic,<br>1990)                               | Kondner &<br>Zelasko (1963);<br>Matasovic &<br>Vucetic (1993)          | Matasovic &<br>Ordonez (2011) |
| DEEPSOIL  | DS-MKZ   |                                                                                                             | Frequency<br>Independent<br>(Hashash, 2009) | Extended MKZ                                          | Non Masing Rules<br>(MRDF) – Phillips &<br>Hashash (2009)                 | Park & Hashash<br>(2001)                                               | Hashash et al<br>(2015)       |
|           | DS-GQ/H  |                                                                                                             |                                             | GQ/H                                                  |                                                                           | Groholski et al<br>(2016)                                              |                               |
| NERA      | NERA     | 1D forward Finite Difference (FD)<br>solving stress wave propagation<br>using Central Difference algorithm. | N/A                                         | IM Soil Model                                         | Follow the behavior                                                       | Iwan (1967) ;<br>Mroz (1967)                                           | Bardet & Tobita<br>(2001)     |
| FLAC      | FLAC     | 2D forward FD solving full dynamic equation. (Distributed Mass)                                             | Full Rayleigh<br>Damping                    | Sigmoidal (Sig3)                                      | of unloading-<br>reloading behavior<br>similar to Masing<br>(1926) rules. | Itasca, 2011                                                           | Itasca, 2011                  |
| OPENSEES  | OPENSEES | 2D Finite Element Method (FEM)<br>solving full dynamic equation.<br>(Distributed Mass)                      |                                             | Pressure Independent<br>Multi Yield surface<br>(PIMY) | (1)20/1244                                                                | Yang (2000);<br>Yang & Elgamal<br>(2000)                               | McKenna & Fenves<br>(2006)    |
| FLIP      | FLIP     | 2D Finite Element Method (FEM)<br>solving full dynamic equation.<br>(Distributed Mass)                      |                                             | Multi-Spring Model                                    | Generalized Masing<br>Rules (Ishihara et al,<br>1985)                     | Towhata &<br>Ishihara (1985),<br>Iai et al (1990), Iai<br>et al (2011) | FLIP Consortium<br>(2011)     |



## Calibración modelo MKZ arcilla de GYE



Figure 3.93 Calibration of the MKZ model with the modulus reduction and damping curve from cyclic test data



GYE-TI clay with a volumetric cyclic threshold shear strain of 0.12%

- El modelo GQ/H (Groholski et al., 2015) permite definir la resistencia al corte del suelo al momento de la falla permitiendo representar la no linealidad del suelo en bajos niveles de deformación
- El comportamiento no lineal se controla mediante una función de ajuste de curva dependiente de la deformación unitaria de corte
- Implementado en el software Deepsoil (Hashash et al., 2016)

Formulación:

$$\frac{\tau}{\tau_{max}} = \frac{2(\gamma/\gamma_r)}{1 + (\gamma/\gamma_r) + \sqrt{\left\{1 + (\gamma/\gamma_r)\right\}^2 - 4\theta_\tau(\gamma/\gamma_r)}}$$

Donde  $\tau$  es el esfuerzo al corte,  $\tau$ max es la resistencia al momento de la falla,  $\gamma$  es la deformación unitaria al corte,  $\gamma$ r es la deformación al corte de referencia, y  $\theta$ t es el parámetros de ajuste de curvatura.

• Parámetros de ajuste de curvatura:

$$\theta_{\tau} = \theta_1 + \frac{\theta_2 \cdot \left(\frac{\gamma}{\gamma_r}\right)}{\theta_3 + \left(\frac{\gamma}{\gamma_r}\right)} \leq 1$$

- Curvas de degradación
  - Se define un valor del esfuerzo de corte (τ) a altas deformaciones
  - Mejora el control de la curva de reducción del módulo, reduce la amplificación o degradación al tener un nivel de resistencia real



• Influencia en los análisis de respuesta de sitio – Groholski et al. (2015)



• Influencia en los análisis de respuesta de sitio – Hutabarat (2016)



 Influencia en los análisis de respuesta de sitio – Proyecto Microzonificación Sísmica de Esmeraldas



## Parámetros dinámicos de suelos

 $G_{max} = \rho (V_s)^2, \rho = \gamma_t/g$ 

 Curva, dependiente de la deformación, de reducción del modulo de corte normalizado (G/G<sub>max</sub> vs. γ)

Curva, dependiente de la deformación,
 del amortiguamiento del material ( $\lambda$  vs.  $\gamma$ )

✓ Resistencia al corte (Su or tan $\phi'$ )

#### Ref: Arroyo, J (2017)

#### Sitio donde se observó licuación, Terrappen Briceño



DPCH (Crosshole, 2 scptu, Dr. Cox (UT AUSTIN)

MASW + MAM Geoestudios, Nestor

**SDMT** (Dilatometro dinamico) Dr. Amoroso

SCPT (Downhole) SUBTERRA, Ing. Illingworth

# Esfuerzo confinante constante

#### PI constante



Darendeli (2001)

## **Volumetric Threshold Strain**





# **Normalized Response**



## Field Strain-Dependent Shear Modulus Reduction Curve



## Vs\* =( $\sum$ Vsi.Hi)/Htotal, Te<sub>1</sub> = 4H<sub>total</sub>/Vs\*



# Seismic calibration

# Site ERU

Te =1.55s

Estadio Ramón Unamuno, ERU 2014  $Vs_A = 120 (s'_o/P_{atm})^{0.273}$  (Soft clay) ; Lin et al., 2014  $G_{max} = C_{C33} Cu^{b1} e^x (s_o'/P_a)^{n_o}$  (Granular geomaterials) ; Menq, 2003  $Vs = 280 (s'_o/P_{atm})^{0.261}$  (Dense sand) ; Lin et al., 2014  $Vs_B = 230 (s'_o/P_{atm})^{0.261}$  (Hard clay) ; Lin et al., 2014  $G_{máx} = P_{at} 380 e^{-1.3} (P/P_{at})^{0.50}$  (Calibrated for GYE-clay) ; modified of Pestana and Salvati, 2006 Profile Selected 210 ECU (SASW at Puerto Azul, 2005) 216 ECU (SASW at Estadio Ramón Unamuno, 2005)







#### R =101 km Subduction event Mw = 5.3

#### Sismo 30 /7/2012





# Sismo 30 /7/2012

### Ondas de corte





#### Análisis de sismos de diseño para sitio ERU, Tr = 475 años



## Efecto de cementación de las arcillas GYE





#### Con cementación GYE- BSF

PGA median NF (SM1/BSF) = 0.53g PGA median NF (SM2/TI) = 0.48g PGA median FF (SM1/BSF) = 0.34g PGA median FF (SM2/TI) = 0.30g Elastic site period, Te = 1.01 sec Vs30m = 110 m/sec





## SITE EFFCTS

#### **Effects of Depth to Bedrock**

(Bray, 2017)



## SITE EFFCTS

#### **Effects of Soft Soil**

(Bray, 2017)

**Spectral Acceleration Amplification Ratio** Soft Soil, PGA = 0.3 for a M=8.0 Earthquake ~60' SOFT CL (18.3m) 5 STIFF Ratio of Response Spectra 4 Depth to Bedrock ----- 100 ft. (30m) 3 - - 200 ft. - - 500 ft. 2 SOFT SOILS ARE 0 IMPORTANT: 0.1 0.01 Period (s)