

ANÁLISIS MODAL Ecuaciones modales para sistemas amortiguados

© 2017 Prof. Eduardo Miranda

El sistema de ecuaciones de un sistema lineal amortiguado de varios grados de libertad está dado por:

 $\mathbf{m}\ddot{\mathbf{u}}(t) + \mathbf{c}\dot{\mathbf{u}}(t) + \mathbf{k}\mathbf{u}(t) = \mathbf{p}(t)$

Nuevamente el vector de desplazamientos $\mathbf{u}(t)$ puede escribirse como la superposición de la contribución de cada modo :

$$\mathbf{u}(t) = \sum_{n=1}^{N} \mathbf{u}_n(t) = \sum_{n=1}^{N} \phi_n q_n(t)$$

En que $\mathbf{u}_n(t)$ contiene la contribución del modo n a cada uno de los grados de libertad dinámicos.

Substituyendo en la ecuación del movimiento obtenemos:

$$\sum_{n=1}^{N} \mathbf{m} \phi_n \ddot{q}_n(t) + \sum_{n=1}^{N} \mathbf{c} \phi_n \dot{q}_n(t) + \sum_{n=1}^{N} \mathbf{k} \phi_n q_n(t) = \mathbf{p}(t)$$

Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017

Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017

© 2017 Prof. Eduardo Miranda

	EJEMPLO ANÁLISIS MODAL ESPECTRAL									
Soluci	ón al ejemplo (continuación):									
Para d de Eig rigidez	obtener periodos de vibración y formas r genvalores, para lo cual antes debemo z del sistema	modales debemos de resolver el proble os de ensamblar las matrices de masa								
Aqui lo	o haremos usando Matlab:									
		MATRIZ DE RIGIDECES								
	WATRIZ DE WASAS									
	>> m=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0	>> k=31.54*[2 -1 0 0 0; -1 2 -1 0 0;0								
	>> m=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 1]*100/386.4	>> k=31.54*[2 -1 0 0 0; -1 2 -1 0 0;0 -1 2 -1 0; 0 0 -1 2 -1;0 0 0 -1 1]								
	>> m=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1]*100/386.4 m =	>> k=31.54*[2 -1 0 0 0; -1 2 -1 0 0;0 -1 2 -1 0; 0 0 -1 2 -1;0 0 0 -1 1] k =								
	>> m=[1 0 0 0 0;0 1 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1]*100/386.4 m = 0.25 0 0 0 0	>> k=31.54*[2 -1 0 0 0; -1 2 -1 0 0;0 -1 2 -1 0; 0 0 -1 2 -1; 0 0 0 -1 1] k =								
	>> m=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1]*100/386.4 m = 0.25 0 0 0 0 0 0.25 0 0 0	>> k=31.54*[2-1000; -12-100;0 -12-10; 00-12-1;000-11] k = 63.08-31.54 0 0 0 -31.54 63.08 -31.54 0 0								
	>> m=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1]*100/386.4 m = 0.25 0 0 0 0 0 0 0.25 0 0 0 0 0 0.25 0 0	>> k=31.54*[2-1000;-12-100;0 -12-10;00-12-1;000-11] k= 63.08-31.540000 -31.5463.08-31.54000 0_315463.08-31.54000								
	>> m=[1 0 0 0 0;0 1 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1]*100/386.4 m = 0.25 0 0 0 0 0 0.25 0 0 0 0 0 0.25 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	>> k=31.54*[2-1000;-12-100;0 -12-10;00-12-1;000-11] k = 63.08-31.540000 -31.5463.08-31.54000 0-31.5463.08-31.54000 0-31.5463.08-31.5400								

EJEMPLO ANÁLIS			
Solución al ejemplo (continuación):			
Las frecuencias circulares de vibración	n y periodos de vibración	de la estructura	están dados por:
$\omega_1 = 3.142$	rad/s	T ₁ = 2.000	s
$\omega_2 = 9.172$	rad/s	T ₂ = 0.685	S
$\omega_3 = 14.459$	rad/s	T ₃ = 0.435	s
$\omega_4 = 18.574$	rad/s	$T_4 = 0.338$	s
$\omega_5 = 21.185$	rad/s	T ₅ = 0.297	s
Usando el método del cociente de habiamos estimado el periodo fundar 2.0s.	e Rayleigh usando los mental como 1.99s, esto	resultados de u es, casi el mismo	n análisis estático o al valor exacto de
Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017		©:	2017 Prof. Eduardo Miranda

Solución al ejemplo (continuación): Para obtener las formas modales: >> [phi,w2]=eig(k,m) phi = Columnas 1 a 3 0.16989112404918 -0.45573414065525 0.59688478766684 0.32601867960932 -0.59688478766684 0.16989112404918 0.45573414065525 -0.32601867960932 -0.54852873198059 0.54852873198059 0.16989112404918 -0.32601867960932 0.59688478766684 0.54852873198059 0.45573414065525 Columnas 4 a 5	
Para obtener las formas modales: >> [phi,w2]=eig(k,m) phi = Columnas 1 a 3 0.16989112404918 -0.45573414065525 0.59688478766684 0.32601867960932 -0.59688478766684 0.16989112404918 0.45573414065525 -0.32601867960932 -0.54852873198059 0.54852873198059 0.16989112404918 -0.32601867960932 0.59688478766884 0.54852873198059 0.45573414065525 Columnas 4 a 5	
<pre>>> [phi,w2]=eig(k,m) phi = Columnas 1 a 3 0.16989112404918 -0.45573414065525 0.59688478766684 0.32601867960932 -0.59688478766684 0.16989112404918 0.45573414065525 -0.32601867960932 -0.54852873198059 0.54852873198059 0.16989112404918 -0.32601867960932 0.5968847876684 0.54852873198059 0.45573414065525 Columnas 4 a 5</pre>	
<pre>>> [phi,w2]=eig(k,m) phi = Columnas 1 a 3 0.16989112404918 -0.45573414065525 0.59688478766684 0.32601867960932 -0.59688478766684 0.16989112404918 0.45573414065525 -0.32601867960932 -0.54852873198059 0.54852873198059 0.16989112404918 -0.32601867960932 0.5968847876684 0.54852873198059 0.45573414065525 Columnas 4 a 5</pre>	
phi = Columnas 1 a 3 0.16989112404918 -0.45573414065525 0.59688478766684 0.32601867960932 -0.59688478766684 0.16989112404918 0.45573414065525 -0.32601867960932 -0.54852873198059 0.54852873198059 0.16989112404918 -0.32601867960932 0.59688478766684 0.54852873198059 0.45573414065525 Columnas 4 a 5	
Columnas 1 a 3 0.16989112404918 -0.45573414065525 0.59688478766684 0.32601867960932 -0.59688478766684 0.16989112404918 0.45573414065525 -0.32601867960932 -0.54852873198059 0.54852873198059 0.16989112404918 -0.32601867960932 0.5968478766684 0.54852873198059 0.45573414065525 Columnas 4 a 5	
0.16989112404918 -0.45573414065525 0.59688478766684 0.32601867960932 -0.59688478766684 0.16989112404918 0.45573414065525 -0.32601867960932 -0.54852873198059 0.54852873198059 0.16989121404918 -0.32601867960932 0.59688478766684 0.54852873198059 0.45573414065525 Columnas 4 a 5	
0.3260186/960932 - 0.396884/8766584 0.16989112404918 0.45573414065525 - 0.32601867960932 - 0.54852873188059 0.54852873189059 0.16989112404918 - 0.32601867960932 0.59688478766684 0.54852873198059 0.45573414065525 Columnas 4 a 5	
0.4557414065525 -0.32601867960932 -0.34852873198059 0.54852873198059 0.165989121404918 -0.32601867960932 0.59688478766684 0.54852873198059 0.45573414065525 Columnas 4 a 5	
0.5968478766684 0.54852873198059 0.45573414065525 Columnas 4 a 5	
Columnas 4 a 5	
0.54852873198059 -0.32601867960932	
-0.45573414065525 0.54852873198059	
-0.16989112404918 -0.59688478766684	
0.59688478766684 0.45573414065525	
-0.32601867960932 -0.16989112404918	

EJEMPLO ANÁLISIS MODAL ESPECTRAL

© 2017 Prof. Eduardo Miranda

Solución al ejemplo (continuación):

Las formas modales pueden normalizarse de muchas maneras. Por ejemplo, las formas modales calculadas con Matlab suelen estar normalizadas para obtener una matriz de masas generalizada igual a la matriz identidad M_n =1

O bien pueden normalizarse para ser igual a uno a nivel de techo: ϕ_{techo} =1

Es importante recordar que los factores de participación dependen de cómo se normalizan los modos:

$$\Gamma_n = \frac{\phi_n^T [m] 1}{M_n} \qquad \qquad M_n = \phi_n^T [m] \phi$$

Por lo tanto Γ_n es inversamente proporcional a las masas generalizadas Pero la respuesta es independiente de cómo se normalicen los modos:

$$u_n(t) = \sum_{i=1}^n \phi_{in} \Gamma_i D_i(t)$$

EJEMPLO ANÁLIS. (Histori	IS MODAL PASO A PASO ia del tiempo)	
Solución al ejemplo (continuación):		- Committee
Los factores de participación modal se calculan	como :	
$\Gamma_n = \frac{\phi_n^{\ T}[m]\{1\}}{\phi_n^{\ T}[m]\phi_n}$ Haciendo las operaciones obtenemos:	$=\frac{\sum_{j=1}^{N}m_{j}\phi_{jn}}{\sum_{j=1}^{N}m_{j}\phi_{jn}^{2}}$	
Gamma =	Γ ₁ = 1.252	
1.25170169910163	$\Gamma_2 = -0.362$	
-0.36214840628168	Γ ₃ = 0.159	
0.1585/84550/663	Γ ₄ = -0.063	
0.01504075320217	Γ ₅ = 0.015	
Siempre hay que recordar que los factores normalicen los modos, por lo que el número grande ο pequeña. Sin embargo el producto Γ los modos hayan sido normalizados	s de particiàción modal Γ_n dependen o en sí no dice si la participación de dicho $n \phi_n$ es independiente (no cambia) de la f	de cómo se o modo será forma en que
Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017	© 2017 Pro	of. Eduardo Miranda

EJEMPLO ANÁ (His	LISIS MODAL PASO A PASO storia del tiempo)
Solución al ejemplo (continuación):	
Los factores de participación modal :	
Con modos ortonormalizados:	Con modos normalizados a uno a nivel de techo:
$\begin{array}{rrrr} \Gamma_{1} &=& 2.097 \\ \Gamma_{2} &=& -0.660 \\ \Gamma_{3} &=& 0.348 \\ \Gamma_{4} &=& 0.194 \\ \Gamma_{5} &=& -0.089 \end{array}$	$ \Gamma_{1} = 1.252 \Gamma_{2} = -0.362 \Gamma_{3} = 0.159 \Gamma_{4} = -0.063 \Gamma_{5} = 0.015 $
Siempre hay que recordar que los fa normalicen los modos, por lo que el nú grande o pequeña. Sin embargo el produ los modos hayan sido normalizados	ctores de particiàción modal Γ_n dependen de cómo se mero en sí no dice si la participación de dicho modo será acto $\Gamma_n\phi_n$ es independiente (no cambia) de la forma en que
Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017	© 2017 Prof. Eduardo Miranda

	EJEMPLO ANÁLISIS MODAL ESPECTRAL										
Soluci	Solución al ejemplo (continuación):										
Las fuerzas modales de calculan con la siguiente ecuación:											
				$f_{jn} =$	$\Gamma_n \phi_{jn}$	$m_j A_n$					
PISO R 5 4 3 2	φ ₁ 1.0000 0.9190 0.7635 0.5462 0.2846	φ ₂ 1.0000 0.3097 -0.5944 -1.0882 -0.8308	φ ₃ 1.0000 -0.7154 -1.2036 0.3728 1.3097	<i>∳</i> ₄ 1.0000 -1.8308 0.5211 1.3979 -1.6825	φ ₅ 1.0 -2.68 3.5 -3.22 1.9	000 325 133 287 190	$\Gamma_1 =$ $\Gamma_2 =$ $\Gamma_3 =$ $\Gamma_4 =$ $\Gamma_5 =$	1.252 -0.362 0.159 -0.063 0.015	$\begin{array}{l} A_1 = \ 0.0388 \\ A_2 = \ 0.1131 \\ A_3 = \ 0.1750 \\ A_4 = \ 0.1750 \\ A_5 = \ 0.1750 \end{array}$	$\begin{array}{l} m_1 = \ 100.0 \\ m_2 = \ 100.0 \\ m_3 = \ 100.0 \\ m_4 = \ 100.0 \\ m_5 = \ 100.0 \end{array}$	
	PISO R 5 4 3 2	f ₁ 4.86 4.46 3.71 2.65 1.38	f ₂ -4.10 -1.27 2.43 4.46 3.40	f ₃ 2.78 -1.99 -3.34 1.03 3.63	f ₄ -1.11 2.02 -0.58 -1.55 1.86	f _s 0.26 -0.71 0.92 -0.85 0.51		f _{SRSS} 7.025 5.483 5.659 5.575 5.515	Note que sería obtener cortanti entrepiso suma fuerzas.	incorrecto ss de ndo estas	
Curso de Diseño S	Sismorresisten	te, Ecuador	Julio 3-6, 20	017					© 2017 Prof.	Eduardo Miranda	

	EJ	EMPLC) ANÁL	ISIS M	ODAL E	SPECTRAL	
Solución	al ejemplo	o (continua	ación):				
ı	_os corta	ntes moc	lales de	entrepise	o de calcula	n de la siguiente ecu	ación:
PISO R 5 4	<i>f</i> ₁ 4.86 4.46 3.71	f ₂ -4.10 -1.27 2.43	f ₃ 2.78 -1.99 -3.34	f ₄ -1.11 2.02 -0.58	f ₅ 0.26 -0.71 0.92	f _{SRSS} 7.025 5.483 5.659	7.02 que sería incorrecto ner cortantes de 18.16
3 2	2.65 1.38	4.46 3.40	1.03 3.63	-1.55 1.86	-0.85 0.51	5.575 fuerz	as. 29.25
ENTREPISO	V ₁	V ₂	V_3	V4	Vs	V _{SRSS}	
5	4.86	-4.10	2.78	-1.11	0.26	7.025	
4	9.32	-5.36	0.79	0.92	-0.44	10.830	
3	13.03	-2.93	-2.55	0.34	0.48	13.608	
2	15.68	1.53	-1.52	-1.20	-0.37	15.877	•
ï		1.00	2.12	0.00	0.14		
rso de Diseño Sisr	morresistente	, Ecuador Juli	o 3-6, 2017			6	2017 Prof. Eduardo Mirand

30100	ción al eje	mplo (co	ntinuaci	ón):						1891
Las d	lesplaza	mientos	modal	es de ca	lculan cor	ı la sigi	uiente	ecuación:		
		u _{jn}	$=\Gamma_n \phi_{jn}$	$D_n = \Gamma_n q$	$\phi_{jn} \frac{A_n}{\omega_n^2} =$	$\Gamma_n \phi_{jn}$	$C_{cn}g\frac{1}{4}$	$\frac{T_n^2}{\pi^2}$		
PISO	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5					
R	1.0000	1.0000	1.0000	1.0000	1.0000	Γ1 =	1.252	A ₁ = 0.0388	T ₁ = 2.000	s
5	0.9190	0.3097	-0.7154	-1.8308	-2.6825	$\Gamma_2 =$	-0.362	A ₂ = 0.1131	T ₂ = 0.685	s
4	0.7635	-0.5944	-1.2036	0.5211	3.5133	$\Gamma_3 =$	0.159	A ₃ = 0.1750	$T_3 = 0.435$	s
3	0.5462	-1.0882	0.3728	1.3979	-3.2287	$\Gamma_4 =$	-0.063	A ₄ = 0.1750	$T_4 = 0.338$	s
2	0.2846	-0.8308	1.3097	-1.6825	1.9190	Γ5 =	0.015	A ₅ = 0.1750	T ₅ = 0.297	s
PISO	u,	<i>u</i> ₂	U3	u₄	u _s		U _{SRSS}			
R	1.8997	-0.1880	0.0513	-0.0124	0.0023		1.910	`		
6	1 7459	0.0592	0.0267	0.0227	0.0061		1 747			
	1.7430	-0.0002	-0.0307	0.0227	-0.0001		1./4/	Note que sería ir	rcorrecto	
4	1.4505	U.1118	-0.0617	-0.0064	0.0080		1.456	 obtener deforma optropico obtonio 	ciones de	
3	1.0376	0.2046	0.0191	-0.0173	-0.0073		1.058	diferencias de es	tos valores	
	0.6407	0 1562	0.0671	0.0208	0.0043		0.567		103 400165.	

	EJE	MPLO	ANÁI	lisis i	NODA	L ES	PECT	TRAL	Q	
Solución a	l ejemplo	(continu	ación):							
Las distorsiones modales de calculan con la siguiente ecuación:										
	$\frac{\Delta_{jn}}{h_{sj}} = \Gamma_n \left(\phi_{jn} - \phi_{j-1,n}\right) \frac{D_n}{h_{sj}} = \Gamma_n \left(\phi_{jn} - \phi_{j-1,n}\right) \frac{A_n}{\omega_n^2 h_{sj}} = \Gamma_n \left(\phi_{jn} - \phi_{j-1,n}\right) C_{cn} g \frac{T_n^2}{4\pi^2 h_{sj}}$									
ENTREPISO	ϕ_{j1} - $f_{j-1,1}$	φ _{j2} - f _{j-1,2} γ	¢ _{j3} − f _{j-1,3}	$\phi_{j4} - f_{j-1,4}$	φ _{j5} - f _{j-1,5}					
R	0.0810	0.6903	1.7154	2.8308	3.6825	$\Gamma_1 =$	1.252	A ₁ = 0.0388	$T_1 = 2.000$	s
5	0.1555	0.9041	0.4882	-2.3519	-6.1958	$\Gamma_2 =$	-0.362	A ₂ = 0.1131	$T_2 = 0.685$	s
4	0.2173	0.4938	-1.5764	-0.8768	6.7420	$\Gamma_3 =$	0.159	A ₃ = 0.1750	$T_3 = 0.435$	s
2	0.2616	-0.2573 -0.8308	-0.9369 1.3097	3.0804 -1.6825	-5.1477 1.9190	Γ ₄ = Γ ₅ =	-0.063 0.015	A ₄ = 0.1750 A ₅ = 0.1750	$T_4 = 0.338$ $T_5 = 0.297$	s
ENTREPISO 5 4 3 2 1	Δ ₁ /h 0.0011 0.0021 0.0029 0.0035 0.0038	Δ ₂ /h -0.0009 -0.0012 -0.0006 0.0003 0.0011	Δ ₃ /h 0.0006 0.0002 -0.0006 -0.0003 0.0005	Δ ₄ /h -0.0002 0.0002 0.0001 -0.0003 0.0001	Δ ₅ /h 0.0001 -0.0001 0.0001 -0.0001 0.0000		∆ _{SRSS} /h 0.002 0.002 0.003 0.003 0.004			
Curso de Diseño Sismorr	resistente, E	cuador Julio	3-6, 2017					© 2013	7 Prof. Eduardo Mi	iranda

	EJE	MPLO	ANÁL	ISIS M	ODAL E	SPECTRAL	
Soluc	ión al ejen	plo (cont	tinuación)	:			1891 1891
Comp	aración de	distorsion	es de entr	episo hac	iendo mal y l	haciendolo bien	
PISO	и,	<i>u</i> ₂	<i>u</i> ₃	U ₄	u _s	$u_{\text{SRSS}} \Delta = u_i - u_{i-1} \Delta / h$	
R	1.8997	-0.1880	0.0513	-0.0124	0.0023	1.910 0.162 0.0011	
5	1.7458	-0.0582	-0.0367	0.0227	-0.0061	1.747 0.291 0.0020	
4	1.4505	0.1118	-0.0617	-0.0064	0.0080	1.456 0.398 0.0028	
3	1.0376	0.2046	0.0191	-0.0173	-0.0073	1.058 0.491 0.0034	
2	0.5407	0.1562	0.0671	0.0208	0.0043	0.567 0.567 0.0039	
ENTREPISC	ο Δ₁/h	Δ_2/h	Δ_3/h	Δ_4/h	$\Delta_{\rm S}/h$	$\Delta_{SRSS} \Delta_{SRSS} / h$	
5	0.1539	-0.1298	0.0879	-0.0350	0.0083	0.223 0.0015	
4	0.2953	-0.1700	0.0250	0.0291	-0.0140	0.343 0.0024	
3	0.4128	-0.0929	-0.0808	0.0109	0.0153	0.431 0.0030	
2	0.4969	0.0484	-0.0480	-0.0381	-0.0117	0.503 0.0035	•
1	0.5407	0.1562	0.0671	0.0208	0.0043	0.567 0.0039	
ojo q Redu Por e	ue estas Cidas. Un L factor I	SON DIST A MEJOR DE REDUC	ORSIONE ESTIMAC CCIÓN R Y	s de ent Ión se o Por el I	Repiso han Btiene mu Actor c _r	N SIDO CALCULADAS CON FI LTIPLICANDO ESTAS DISTOR	JERZAS SIONES
Curso de Diseño Sism	orresistente,	Ecuador Julio	o 3-6, 2017			© 2017 Prof	. Eduardo Miranda

CONTRIBUCIÓN DE MODOS SUPERIORES Del ejemplo de análisis modal espectral										
PISO	(u1) u ₂	U3	u₄	u₅	U _{SRSS}				
R	1.8997	-0.1880	0.0513	-0.0124	0.0023	1.910				
5	1.7458	-0.0582	-0.0367	0.0227	-0.0061	1.747				
4	1.4505	0.1118	-0.0617	-0.0064	0.0080	1.456				
3	1.0376	0.2046	0.0191	-0.0173	-0.0073	1.058				
2	0.5407	0.1562	0.0671	0.0208	0.0043	0.567				
						\square				
Curso de Diseño Sismorresistente	e, Ecuador Julio	3-6, 2017				© 2017 Prof. E	duardo Miranda			

CONTRIBUCIÓN DE MODOS SUPERIORES										
Del ejemplo de análisis modal espectral										
ENTREPISO	A./h	A./h	A./h	1./h	A-/h	Anna Anna/h				
5	0 1539	-0 1298	0.0879	-0.0350	0.0083	0.223 0.0015				
4	0.2953	-0.1700	0.0250	0.0291	-0.0140	0.343 0.0024				
3	0.4128	-0.0929	-0.0808	0.0109	0.0153	0.431 0.0030				
2	0.4969	0.0484	-0.0480	-0.0381	-0.0117	0.503 0.0035				
1	0.5407	0.1562	0.0671	0.0208	0.0043	0.567 0.0039				
	\square					\square				
Curso de Diseño Sismorres	istente, Ecu	ador Julio 3-6	i, 2017			© 2017 Prof.	Eduardo Miranda			

)el eiemplo de :	análisis mo	dal esnect	ral			·
		dui copeet				
Los corta	ntes de er	n trepiso so	n:			
ENTREPISO	V1	V2	V ₃	V₄	V ₅	VSPSS
5	4.86	-4.10	2.78	-1.11	0.26	7.025
4	9.32	-5.36	0.79	0.92	-0.44	10.830
3	13.03	-2.93	-2.55	0.34	0.48	13.608
2	15.68	1.53	-1.52	-1.20	-0.37	15.877
1	17.06	4.93	2.12	0.66	0.14	17.899
1 Claramente de entrepiso	17.06 si desprecia . En este eje	4.93 mos los mo	2.12 dos superior tante basal	0.66 es estaríam solo sería s	0.14 los subestimai subestimado u	17.899 ndo los cortantes n poco (17.06 vs

CONTRIBUCIÓN DE MODOS SUPERIOR	es
Los comentarios anteriores deben tambien tomar en cuenta el contenido de fr movimiento de terreno. Por ejemplo para ciertas estructuras aun parámetros o que dependen de aceleraciones pueden estar fuertemente dominados por el pri	ecuencia del de respuesta mer modo.
$f_{j}(t) = \sum_{n=1}^{N} \Gamma_{n} \phi_{jn} m_{j} \left(f_{n}(t) \right) \qquad \qquad$	$\left[S_{a,n}\right]^2$
S ₄ [s] EW Comp of SCT Mexico City record	
T ₅ I ₄ I ₃ T ₂ I ₁ Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017	2017 Prof. Eduardo Miranda

	CON	ITRIBU	CIÓN DI	EMOD	OS SUPEI	RIORES	G
Del ejemplo de	e análisis m	iodal espe	ctral				
Las fuer	zas modal	les que cal	culamos en	el ejemplo	son:		
PISO	f ₁	f_2	f_3	f4	f5	f _{srss}	
R	4.86	-4.10	2.78	-1.11	0.26	7.025	
5	4.46	-1.27	-1.99	2.02	-0.71	5.483	
4	3.71	2.43	-3.34	-0.58	0.92	5.659	
3	2.65	4.46	1.03	-1.55	-0.85	5.575	
2	1.38	3.40	3.63	1.86	0.51	5.515	
Claramente importante subestimad	e si desprecia las fuerzas da fuertemen	amos los m modales. E te (1.38 vs.	iodos super n este ejen 5.5 !!!)	iores estar nplo la fuer	íamos subesti za modal en e	mando en forma el segundo piso :	muy sería

© 2017 Prof. Eduardo Miranda

CONTRIBUCIÓN DE MODOS SUPERIORES							
Del ejemplo d	le análisis	modal es	pectral				
	\frown						
ENTREPISO	Δ_1/h	Δ_2/h	Δ_3/h	Δ_4/h	Δ_5/h	Δ_{SRSS}	Δ_{SRSS}/h
5	0.1539	-0.1298	0.0879	-0.0350	0.0083	0.223	0.0015
4	0.2953	-0.1700	0.0250	0.0291	-0.0140	0.343	0.0024
3	0.4128	-0.0929	-0.0808	0.0109	0.0153	0.431	0.0030
2	0.4969	0.0484	-0.0480	-0.0381	-0.0117	0.503	0.0035
1	0.5407	0.1562	0.0671	0.0208	0.0043	0.567	0.0039
	\square					\square	
Contribucione	es (en %) a	las distorsio	ones de entr	episo			
ENTREPISO	Modo 1	Modo 2	Modo 3	Modo 4	Modo 5		
R	47.79%	33.99%	15.60%	2.48%	0.14%		
5	74.05%	24.53%	0.53%	0.72%	0.17%		
4	91.66%	4.64%	3.51%	0.06%	0.13%		
3	97.54%	0.92%	0.91%	0.57%	0.05%		
2	90.87%	7.59%	1.40%	0.13%	0.01%		
Curso de Diseño Sismorresister	nte, Ecuador J	ulio 3-6, 2017				© 2017 Prof.	Eduardo Miranda
•		-					

MÉTODO RÁPIDO (APROXIMADO) DE ESTIMACIÓN DE DEFORMACIONES LATERALES EN EDIFICIOS (\bigcirc)

Como hemos comentado el daño estructural y muchos tipos de daño no estructural son el resultado de deformaciones laterales.

Un buen parámetro que ofrece una medida de las deformaciones laterales globales en un edificio es el desplazamiento de techoazotea (desplazamiento relativo al terreno)

En el caso de puentes una medida de deformación global es el desplazamiento lateral del tablero de la superestructura (donde se ubica la mayor parte de la masa).

Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017

© 2017 Prof. Eduardo Miranda

© 2017 Prof. Eduardo Miranda

Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017

MÉTODO RÁPIDO (APROXIMADO) DE ESTIMACIÓN DE DEFORMACIONES LATERALES EN EDIFICIOS						
ESTIMACIÓN DEL DESPLAZAMIENTO DE TECHO / AZOTEA:						
Del ejemplo de análisis modal espectral						
PISO	<i>u</i> 1	<i>u</i> ₂	u ₃	U4	u ₅	U _{SRSS}
R	1.8997	-0.1880	0.0513	-0.0124	0.0023	1.910
5	1.7458	-0.0582	-0.0367	0.0227	-0.0061	1.747
4	1.4505	0.1118	-0.0617	-0.0064	0.0080	1.456
3	1.0376	0.2046	0.0191	-0.0173	-0.0073	1.058
2	0.5407	0.1562	0.0671	0.0208	0.0043	0.567
Contribuciones (en %) a los desplazamientos laterales						
PISO	Modo 1	Modo 2	Modo 3	Modo 4	Modo 5	
R	98.95%	0.97%	0.07%	0.00%	0.00%	
5	99.83%	0.11%	0.04%	0.02%	0.00%	
4	99.23%	0.59%	0.18%	0.00%	0.00%	
3	96.20%	3.74%	0.03%	0.03%	0.00%	
2	90.87%	7.59%	1.40%	0.13%	0.01%	
urso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017 © 2017 Prof. Eduardo Miranda						

Γn Óir

Curso de Diseño Sismorresistente. Ecuador Julio 3

© 2017 Prof. Eduardo Miranda

MÉTODO RÁPIDO (APROXIMADO) DE ESTIMACIO DEFORMACIONES LATERALES EN EDIFICIO	ón de os
ESTIMACIÓN DEL DESPLAZAMIENTO DE TECHO / AZOTEA:	A CONTRACTOR OF
Repitiendo la ecuación de la aproximación del desplazamiento de tech	o / azotea
$u_{roof} \approx \Gamma_1 \phi_{roof,1} S_{d,1}$	
Si los modos estan normalizados a ser igual a uno a nivel de azote $\phi_{roof,I} = 1~$ y la ecuación anterior puede escribirse como	a entonces
$\left(u_{roof} \approx \Gamma_1 S_{d,1}\right)$	
urso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017	© 2017 Prof. Eduardo Miranda

MÉTODO RÁPIDO (APROXIMADO) DE ESTIMACIÓN DE DEFORMACIONES LATERALES EN EDIFICIOS

ESTIMACIÓN DEL DESPLAZAMIENTO DE TECHO / AZOTEA:

Con la finalidad de tomar en cuenta la forma del primer modo en la estimación de deformaciones laterales en edificios, Miranda (1997, 1999) propuso un método para estimar el desplazamiento de techo / azotea y la distorsión máxima de entrepiso sabiendo únicamente el número de pisos y un parámetro adimensional α_0 .

 α_0 = Controla el grado de participación de deformación laterales de corte y de flexión en edificios

ESTIMACIÓN DEL DESPLAZAMIENTO DE TECHO / AZOTEA:

Un valor de α_0 =0 corresponde a un edificio cuyas deformaciones laterales son semejantes a las de una viga de flexión. Así mismo un valor de α_0 >30 corresponde to buildings that deflect laterally like shear beams.

Es importante hacer notar que no se require de una estimación muy precisa del valor de α_0 . Puede aproximarse en base al sistema resistente a fuerzas laterales de la estructura.

Curso de Diseño Sismorresistente, Ecuador Julio 3-6, 2017		© 2017 Prof. Eduardo Miranda
Muros de corte o pórticos arriostrados	0 a 2	1
Sistemas duales	1.5 a 6	4
Pórticos	5 a 20	15
Sistema Resistente a Fuerzas Laterales	α_0	Valor de α_0 recomendedo

En donde el factor β_1 es una aproximación al producto del factor de participación modal del primer modo y la forma modal del primer modo a nivel de techo. La aproximación se basa en un modelo simplificado pero con bases sólidas de comportamiento mecánico de estructuras sujetas a fuerzas laterales.

MÉTODO RÁPIDO (APROXIMADO) DE ESTIMACIÓN DE
DEFORMACIONES LATERALES EN EDIFICIOSMÉTODO RÁPIDO (APROXIMADO) DE ESTIMACIÓN DE
DEFORMACIONES LATERALES EN EDIFICIOSESTIMACIÓN DEL DESPLAZAMIENTO DE TECHO / AZOTEA:ESTIMACIÓN DEL DESPLAZAMIENTO DE TECHO / AZOTEA:Miranda (1991, 1997, 1999) propuso que para estructuras con
comportamiento no lineal el desplazamiento del techo se estime con la
siguiente ecuaciónESTIMACIÓN DEL DESPLAZAMIENTO DE TECHO / AZOTEA:Donde el factor
$$\beta_2$$
 es una factor que relaciona el valor promedio del cociente de
defomaciones elásticas a deformaciones elásticas $\beta_i = C_g C_1 C_2 S_a \frac{T_e^2}{4\pi^2} g$ Donde el factor β_2 es una factor que relaciona el valor promedio del cociente de
defomaciones elásticas a deformaciones elásticasLo que en el método original yo llame β_1 en el documento ASCE 41 es C_0 y lo
que el método original era β_3 en el documento ASCE 41 es el factor C_1 .Curse de Diseño Simorresistente, Exudor Julio 34, 20176 2012 Prot. Eduardo Miranda

RESUMEN

© 2017 Prof. Eduardo Miranda

- Se hizo un breve repaso del método modal espectral en que las respuestas modales pico se combinan mediante reglas APROXIMADAS (raíz cuadrada de la suma de los cuadrados y combinación cuadrática completa, CQC). Se presentó un ejemplo de aplicación de este método.
- Se presentó un método aproximado para estimar las deformaciones laterales de un edificio y se presentó un método de diseño basado en desplazamientos.

